Feed Type: prompt.llmfeed.json โ Structured Prompts for the Agentic Web
Portable, signed, and certifiable prompts for professional use
HIGHintermediatesigned15 min
๐
Created: 6/10/2025
๐ฅ Audience: llm, developer, prompt-engineer
๐ Feed Types:prompttrustcertification
โก Capabilities:prompt-certificationsignature-verificationmarketplace-integration
๐ค LLMFeed:/.well-known/mcp.llmfeed.json
Feed Type: `prompt.llmfeed.json`
Purpose
This feed encapsulates a structured prompt that can be shared, interpreted, replayed or executed by an LLM or agent.
It is a better alternative to copy-pasted text: portable, inspectable, and context-aware.
Typical Use Cases
- Prompt engineering documentation
- Invocation of external services or agent actions
- Instructing LLMs to generate other
.llmfeed.json
types - Sharing reproducible queries across agents or tools
- Professional prompt libraries and marketplaces
Canonical Structure
json
{
"feed_type": "prompt",
"metadata": {
"title": "Generate a session feed",
"origin": "https://tool.llmfeed.org",
"author": "Alex Chen",
"created_at": "2025-06-10T14:30:00Z"
},
"intent": "export current session as JSON",
"context": "User is finishing a chat and wants to save the reasoning path.",
"precision_level": "ultra-strict",
"result_expected": "session",
"process_mode": "prepare-for-another",
"prompt_body": "You are an LLM that supports LLMFeed. Please generate a session feed with context, output and decisions.",
"trust": {
"signed_blocks": ["metadata", "prompt_body", "trust"],
"scope": "public",
"certifier": "https://llmca.org"
},
"signature": {
"value": "abc123...",
"created_at": "2025-06-10T14:30:00Z"
}
}
Core Fields
Field | Required | Description |
---|---|---|
`prompt_body` | โ | The actual instruction to the LLM |
`intent` | โ | What the user or system expects |
`context` | โ ๏ธ | Extra info the LLM should consider |
`precision_level` | โ ๏ธ | `"raw"`, `"strict"`, `"ultra-strict"` |
`process_mode` | โ ๏ธ | `"instruct"`, `"fill-and-execute"`, `"prepare-for-another"` |
`result_expected` | โ ๏ธ | `"text"`, `"feed"`, `"code"`, `"session"` |
`attachments[]` | โ ๏ธ | Optional examples, templates, context |
`audience` | โ ๏ธ | If only for LLM, wrapper, user etc. |
Trust & Ownership
Basic Signing
json
"trust": {
"signed_blocks": ["metadata", "prompt_body", "trust"],
"scope": "public"
},
"signature": {
"value": "signature_hash_here",
"created_at": "2025-06-10T14:30:00Z"
}
Certification (Optional)
json
"certification": {
"issuer": "https://llmca.org",
"cert_id": "llmca-prompt-2025-001",
"certified_blocks": ["prompt_body", "performance_metrics"],
"issued_at": "2025-06-10T10:00:00Z",
"expires_at": "2026-06-10T10:00:00Z"
}
Why sign prompts?
- โ Prove authorship and prevent tampering
- โ Build reputation as a prompt engineer
- โ Enable marketplaces for certified prompts
- โ Establish trust for sensitive use cases
Agent Behavior
An agent that receives this feed should:
- Parse the
prompt_body
and execute it - Respect
precision_level
andprocess_mode
- Attach any referenced templates or context
- Return a structured response as declared in
result_expected
- Verify signatures if trust is required
Simple Examples
Educational Prompt
json
{
"feed_type": "prompt",
"metadata": {
"title": "Python Code Explainer",
"author": "CS101 Team"
},
"intent": "explain Python code for beginners",
"prompt_body": "Explain this Python code step-by-step for a beginner: [CODE]",
"audience": ["student", "llm"],
"result_expected": "text"
}
API Documentation Generator
json
{
"feed_type": "prompt",
"metadata": {
"title": "API Doc Generator",
"origin": "https://devtools.example.com"
},
"intent": "generate API documentation",
"prompt_body": "Generate clear API documentation for this endpoint: [ENDPOINT_DATA]",
"result_expected": "markdown",
"attachments": [
{
"name": "doc_template.md",
"description": "Standard documentation template"
}
]
}
๐ Advanced Features
Professional Use Cases
Medical Consultation Assistant
json
{
"feed_type": "prompt",
"metadata": {
"title": "Emergency Triage Assistant",
"author": "Dr. Sarah Chen, MD",
"institution": "Regional Medical Center"
},
"professional_validation": {
"medical_board_approved": true,
"peer_reviewed": true,
"liability_coverage": "institutional_malpractice_policy"
},
"prompt_body": "Assess patient symptoms and provide triage recommendations following emergency medicine protocols...",
"usage_restrictions": {
"requires_medical_license": true,
"human_oversight_required": true,
"emergency_use_only": false
}
}
Legal Document Analysis
json
{
"feed_type": "prompt",
"metadata": {
"title": "Contract Risk Analyzer",
"author": "LegalTech Solutions Inc."
},
"commercial_licensing": {
"license_type": "professional",
"pricing": "$0.10_per_analysis",
"client_restrictions": "law_firms_only"
},
"prompt_body": "Analyze this contract for potential risks and compliance issues..."
}
Intellectual Property & Licensing
Copyright Protection
json
"intellectual_property": {
"copyright": "ยฉ 2025 Prompt Engineer Name",
"license": "Creative Commons Attribution 4.0",
"attribution_required": true,
"commercial_use": "permitted_with_license"
}
Commercial Licensing
json
"commercial_licensing": {
"available": true,
"pricing_model": "per_use",
"base_rate": "$0.01_per_invocation",
"volume_discounts": [
{"min_uses": 1000, "discount": "10%"},
{"min_uses": 10000, "discount": "25%"}
],
"contact": "licensing@promptcompany.com"
}
Performance & Analytics
Performance Metrics
json
"performance_metrics": {
"accuracy_benchmark": "94.7%",
"average_response_time": "2.3s",
"user_satisfaction": "4.6/5.0",
"total_uses": 15847,
"success_rate": "91.2%"
}
LLM Compatibility
json
"llm_compatibility": {
"gpt_4": {"score": 0.95, "optimal_temp": 0.3},
"claude_3": {"score": 0.92, "optimal_temp": 0.2},
"gemini": {"score": 0.89, "requires_adaptation": true}
}
Behavioral Controls
Agent Guidance
json
"agent_guidance": {
"interaction_tone": "professional",
"consent_hint": "Ask user before accessing sensitive data",
"risk_tolerance": "low",
"fallback_behavior": "escalate_to_human"
}
Trigger Targets
json
"trigger_targets": [
{
"type": "llmfeed",
"feed_type": "export",
"url": "https://example.org/exports/results.llmfeed.json"
},
{
"type": "action",
"label": "Generate Report",
"href": "/tools/report-generator"
}
]
Best Practices
For Basic Users
- Start simple - just
prompt_body
andintent
- Add
trust
block for any shared prompts - Use clear
metadata
for discovery - Test with target LLMs before publishing
For Professional Use
- Always sign commercially-used prompts
- Seek certification for high-risk domains
- Include performance metrics for transparency
- Follow licensing requirements in your jurisdiction
- Test cross-platform compatibility
For Marketplaces
- Implement proper attribution systems
- Verify signatures before listing
- Respect usage restrictions and licensing terms
- Provide performance analytics to buyers
MIME Type
Content-Type: application/llmfeed+json
Or specifically:
Content-Type: application/prompt+llmfeed
Related Feed Types
session.llmfeed.json
: Captures prompt usage in workflowscredential.llmfeed.json
: Authentication for premium promptscapabilities.llmfeed.json
: Services that use certified promptsmcp.llmfeed.json
: Overall service context including prompt libraries
References
โก
Ready to Implement? Get AI-Powered Guidance
Reading docs manually takes time. Your AI can digest the complete LLMFeed specification and provide implementation guidance tailored to your needs.
๐ฏ
Quick Start
Essential concepts for immediate implementation
~22K tokens โข 30s analysis โข Core concepts
๐
Complete Mastery
Full specification with examples and edge cases
~140K tokens โข 2min analysis โข Everything
๐ก Works with Claude, ChatGPT, Geminiโก Instant implementation guidance๐ฏ Tailored to your specific needs